Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
N Engl J Med ; 385(12): 1067-1077, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1413249

ABSTRACT

BACKGROUND: Salt substitutes with reduced sodium levels and increased potassium levels have been shown to lower blood pressure, but their effects on cardiovascular and safety outcomes are uncertain. METHODS: We conducted an open-label, cluster-randomized trial involving persons from 600 villages in rural China. The participants had a history of stroke or were 60 years of age or older and had high blood pressure. The villages were randomly assigned in a 1:1 ratio to the intervention group, in which the participants used a salt substitute (75% sodium chloride and 25% potassium chloride by mass), or to the control group, in which the participants continued to use regular salt (100% sodium chloride). The primary outcome was stroke, the secondary outcomes were major adverse cardiovascular events and death from any cause, and the safety outcome was clinical hyperkalemia. RESULTS: A total of 20,995 persons were enrolled in the trial. The mean age of the participants was 65.4 years, and 49.5% were female, 72.6% had a history of stroke, and 88.4% a history of hypertension. The mean duration of follow-up was 4.74 years. The rate of stroke was lower with the salt substitute than with regular salt (29.14 events vs. 33.65 events per 1000 person-years; rate ratio, 0.86; 95% confidence interval [CI], 0.77 to 0.96; P = 0.006), as were the rates of major cardiovascular events (49.09 events vs. 56.29 events per 1000 person-years; rate ratio, 0.87; 95% CI, 0.80 to 0.94; P<0.001) and death (39.28 events vs. 44.61 events per 1000 person-years; rate ratio, 0.88; 95% CI, 0.82 to 0.95; P<0.001). The rate of serious adverse events attributed to hyperkalemia was not significantly higher with the salt substitute than with regular salt (3.35 events vs. 3.30 events per 1000 person-years; rate ratio, 1.04; 95% CI, 0.80 to 1.37; P = 0.76). CONCLUSIONS: Among persons who had a history of stroke or were 60 years of age or older and had high blood pressure, the rates of stroke, major cardiovascular events, and death from any cause were lower with the salt substitute than with regular salt. (Funded by the National Health and Medical Research Council of Australia; SSaSS ClinicalTrials.gov number, NCT02092090.).


Subject(s)
Cardiovascular Diseases/prevention & control , Diet, Sodium-Restricted , Hypertension/diet therapy , Stroke/prevention & control , Aged , Cardiovascular Diseases/epidemiology , China , Diet, Sodium-Restricted/adverse effects , Female , Humans , Hyperkalemia/complications , Hypertension/complications , Hypertension/epidemiology , Male , Middle Aged , Mortality , Potassium, Dietary/adverse effects , Secondary Prevention , Stroke/epidemiology
2.
J Cell Mol Med ; 25(14): 7001-7012, 2021 07.
Article in English | MEDLINE | ID: covidwho-1276684

ABSTRACT

The coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in many deaths throughout the world. It is vital to identify the novel prognostic biomarkers and therapeutic targets to assist with the subsequent diagnosis and treatment plan to mitigate the expansion of COVID-19. Since angiotensin-converting enzyme 2 (ACE2)-positive cells are hosts for COVID-19, we focussed on this cell type to explore the underlying mechanisms of COVID-19. In this study, we identified that ACE2-positive cells from the bronchoalveolar lavage fluid (BALF) of patients with COVID-19 belong to bronchial epithelial cells. Comparing with patients of COVID-19 showing severe symptoms, the antigen processing and presentation pathway was increased and 12 typical genes, HLA-DRB5, HLA-DRB1, CD74, HLA-DRA, HLA-DPA1, HLA-DQA1, HSP90AA1, HSP90AB1, HLA-DPB1, HLA-DQB1, HLA-DQA2, and HLA-DMA, particularly HLA-DPB1, were obviously up-regulated in ACE2-positive bronchial epithelial cells of patients with mild disease. We further discovered SDCBP was positively correlated with above 12 genes particularly with HLA-DPB1 in ACE2-positive bronchial epithelial cells of COVID-19 patients. Moreover, SDCBP may increase the immune infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells in different lung carcinoma. Moreover, we found the expression of SDCBP was positively correlated with the expression of antigen processing and presentation genes in post-mortem lung biopsies tissues, which is consistent with previous discoveries. These results suggest that SDCBP has good potential to be further developed as a novel diagnostic and therapeutic target in the treatment of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Bronchi/pathology , COVID-19/pathology , Epithelial Cells/metabolism , RNA-Seq , Severity of Illness Index , Single-Cell Analysis , Syntenins/metabolism , Antigen Presentation/genetics , Bronchoalveolar Lavage Fluid , COVID-19/genetics , COVID-19/metabolism , Epithelial Cells/pathology , Gene Expression Profiling , Humans , Postmortem Changes , SARS-CoV-2/physiology , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL